Multicoloring and Mycielski construction

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circular coloring and Mycielski construction

In this paper, we investigate circular chromatic number of Mycielski construction of graphs. It was shown in [20] that t Mycielskian of the Kneser graph KG(m,n) has the same circular chromatic number and chromatic number provided that m + t is an even integer. We prove that if m is large enough, then χ(M (KG(m,n))) = χc(M (KG(m,n))) where M t is t Mycielskian. Also, we consider the generalized ...

متن کامل

Circular chromatic number and Mycielski construction

This paper gives a sufficient condition for a graph G to have its circular chromatic number equal its chromatic number. By using this result, we prove that for any integer t ≥ 1, there exists an integer n such that for all k ≥ n χc(M (Kk)) = χ(M (Kk)).

متن کامل

The Ehrenfeucht-Mycielski Sequence

We show that the Ehrenfeucht-Mycielski sequence U is strongly balanced in the following sense: for any finite word w of length k, the limiting frequency of w in U is 2. 1. The Ehrenfeucht-Mycielski Sequence In [2] Ehrenfeucht and Mycielski introduced an infinite binary word based on avoiding repetitions. More precisely, to construct the Ehrenfeucht-Mycielski (EM) sequence U , start with a singl...

متن کامل

Minimum Sum Multicoloring

The edge multicoloring problem is that given a graph G and integer demands x(e) for every edge e, assign a set of x(e) colors to vertex e, such that adjacent edges have disjoint sets of colors. In the minimum sum edge multicoloring problem the finish time of an edge is defined to be the highest color assigned to it. The goal is to minimize the sum of the finish times. The main result of the pap...

متن کامل

Circular Chromatic Number and Mycielski Graphs

As a natural generalization of graph coloring, Vince introduced the star chromatic number of a graph G and denoted it by χ∗(G). Later, Zhu called it circular chromatic number and denoted it by χc(G). Let χ(G) be the chromatic number of G. In this paper, it is shown that if the complement of G is non-hamiltonian, then χc(G)=χ(G). Denote by M(G) the Mycielski graph of G. Recursively define Mm(G)=...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2008

ISSN: 0012-365X

DOI: 10.1016/j.disc.2007.07.015